Issue 21, 2015

Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells

Abstract

We apply drop-on-demand inkjet printing to fabricate proton exchange membranes for polymer electrolyte fuel cells. This completely substitutes the commonly used membrane foil. A Nafion® dispersion is deposited directly onto the catalyst layers of anode and cathode gas diffusion electrodes, and the two electrodes are pressed together with the membrane layers facing each other. Fuel cells constructed utilizing this method reveal a thin overall membrane thickness of 8–25 μm and a good adhesion of membrane and catalyst layers. This results in a membrane ionic resistance of only 12.7 mΩ cm2 without compromising hydrogen crossover, which was determined to be less than 2 mA cm−2. We achieve a cell power density exceeding 4 W cm−2 with pure oxygen as cathode fuel, which, to our knowledge, is the highest reported power density with a Nafion® membrane hydrogen fuel cell. The membrane shows a stable performance over the entire range of reactant gas humidification from 0 to 100% relative humidity. Power densities exceeding 1.0 W cm−2 are achieved under dry operation with air as cathode fuel. A 576 hour combined mechanical and chemical accelerated stress test reveals no significant degradation in terms of hydrogen crossover, indicating a promising lifetime of the membrane.

Graphical abstract: Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells

Article information

Article type
Paper
Submitted
18 Feb 2015
Accepted
30 Mar 2015
First published
02 Apr 2015
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2015,3, 11239-11245

Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells

M. Klingele, M. Breitwieser, R. Zengerle and S. Thiele, J. Mater. Chem. A, 2015, 3, 11239 DOI: 10.1039/C5TA01341K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements