Issue 28, 2015

Rational design and synthesis of polythioureas as capacitor dielectrics

Abstract

Rational strategies combining computational and experimental procedures accelerate the process of designing and predicting properties of new materials for a specific application. Here, a systematic study is presented on polythioureas for high energy density capacitor applications combining a newly developed modelling strategy with synthesis and processing. Synthesis was guided by implementation of a high throughput hierarchical modelling with combinatorial exploration and successive screening, followed by an evolutionary structure search based on density functional theory (DFT). Crystalline structures of polymer films were found to be in agreement with DFT predicted results. Dielectric constants of ∼4.5 and energy densities of ∼10 J cm−3 were achieved in accordance with Weibull characteristic breakdown fields of ∼700 MV m−1. The variation of polymer backbone using aromatic, aliphatic and oligoether segments allowed for tuning dielectric properties through introduction of additional permanent dipoles, conjugation, and better control of morphology.

Graphical abstract: Rational design and synthesis of polythioureas as capacitor dielectrics

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2015
Accepted
17 Apr 2015
First published
30 Apr 2015

J. Mater. Chem. A, 2015,3, 14845-14852

Author version available

Rational design and synthesis of polythioureas as capacitor dielectrics

R. Ma, V. Sharma, A. F. Baldwin, M. Tefferi, I. Offenbach, M. Cakmak, R. Weiss, Y. Cao, R. Ramprasad and G. A. Sotzing, J. Mater. Chem. A, 2015, 3, 14845 DOI: 10.1039/C5TA01252J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements