Issue 12, 2015

Uniform core–shell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A

Abstract

Uniform core–shell structured magnetic mesoporous TiO2 (Fe3O4@SiO2@mTiO2) nanospheres were fabricated via a kinetically controlled Stöber method. A silica interlayer with a thickness of ∼25 nm was introduced as a passivation barrier to prevent photodissociation, as well as increase the thermal stability of the core–shell materials. After crystallizing at 600 °C under nitrogen, the resultant nanospheres (Fe3O4@SiO2@mTiO2-600) possessed well-defined core–shell structures with a high magnetic susceptibility (∼17.0 emu g−1) and exhibited uniform mesopores (∼5.2 nm), large BET surface area (∼216 m2 g−1) and large pore volume (∼0.20 cm3 g−1). More importantly, the magnetic mesoporous TiO2 was demonstrated for the first time as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A. The pseudo first-order-reaction constant of the magnetic mesoporous TiO2 was measured to be 0.164 min−1, which is 1.49 and 2.27 times higher than that of P25 and ultrasound alone, respectively. The remarkable performance is attributed to the fast mass diffusion, large adsorption rate and enhanced hydroxyl-radical-production rate of the nanospheres. More importantly, the catalyst can be easily recycled within 2 minutes using an external magnetic field, and a constant catalytic activity is retained even after eight cycles. This study paves a promising way for the design and synthesis of magnetically separable sonocatalysts for the degradation of organic pollutants, which is of significant importance for practical applications from both environmental and industrial points of view.

Graphical abstract: Uniform core–shell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2014
Accepted
19 Jan 2015
First published
20 Jan 2015

J. Mater. Chem. A, 2015,3, 6492-6500

Author version available

Uniform core–shell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A

P. Qiu, W. Li, B. Thokchom, B. Park, M. Cui, D. Zhao and J. Khim, J. Mater. Chem. A, 2015, 3, 6492 DOI: 10.1039/C4TA06891B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements