Issue 9, 2015

Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles

Abstract

Mixed matrix membranes (MMM) have the potential to overcome the limitations of traditional polymeric membranes for gas separation by improving both the permeability and selectivity. The most difficult challenge is accessing defect free and optimized MMM membranes. Defects are generally due to incompatible interfaces between the polymer and the filler particle. Herein, we present a new approach to modify and optimize the surface of UiO-66-NH2 based MOF particles to improve its interaction with Matrimid® polymer. A series of surface modified UiO-66-NH2 particles were synthesized and characterized using 1H NMR spectroscopy, mass spectrometry, XPS, and powder X-ray diffraction. MMMs containing surface optimized MOF particles exhibit improved thermal and mechanical properties. Most importantly, the MMMs show significantly enhanced gas separation properties; CO2 permeability was increased by ∼200% and CO2/N2 ideal selectivity was increased by ∼25%. These results confirm the success of the proposed technique to mitigate defective MOF/Matrimid® interfaces.

Graphical abstract: Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles

Supplementary files

Article information

Article type
Paper
Submitted
01 Oct 2014
Accepted
24 Jan 2015
First published
27 Jan 2015

J. Mater. Chem. A, 2015,3, 5014-5022

Author version available

Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles

S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi and E. Albenze, J. Mater. Chem. A, 2015, 3, 5014 DOI: 10.1039/C4TA05225K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements