Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Tuesday 19th September 2017 from 8.00am to 4.00pm (BST).

During this time our website performance may be temporarily affected. If you have any questions please use the feedback button available under our menu button. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 17, 2015
Previous Article Next Article

Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells

Author affiliations

Abstract

A HC(NH2)2PbI3 solar cell of perovskite structure based on TiO2 nanohelices has been developed. Well-aligned helical TiO2 arrays of different pitch (p) and radius (r), helix-1 (p/2 = 118 nm, r = 42 nm), helix-2 (p/2 = 353 nm, r = 88 nm) and helix-3 (p/2 = 468 nm, r = 122 nm), were grown on fluorine-doped tin oxide (FTO) glass by oblique-angle electron beam evaporation. HC(NH2)2PbI3 perovskite was deposited on the TiO2 nanohelices by a two-step dipping method. Helix-1 showed higher short-circuit current density (JSC), whereas helix-3 exhibited slightly higher open-circuit voltage (VOC). HC(NH2)2PbI3 perovskite combined with helix-1 demonstrated an average power conversion efficiency of 12.03 ± 0.07% due to its higher JSC compared to helix-2 and helix-3. The higher JSC of helix-1 could be attributed to its greater light scattering efficiency and higher absorbed photon-to-current conversion efficiency. In addition, despite having the longest pathway structure, helix-1 showed rapid electron diffusion, attributed to its higher charge injection efficiency due to the larger contact area between perovskite and TiO2. We have established that fine tuning of the interface between perovskite and the electron-injecting oxide is a crucial factor in achieving a perovskite solar cell of high performance.

Graphical abstract: Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells

Back to tab navigation

Publication details

The article was received on 21 Sep 2014, accepted on 12 Nov 2014 and first published on 21 Nov 2014


Article type: Paper
DOI: 10.1039/C4TA04988H
Citation: J. Mater. Chem. A, 2015,3, 9179-9186
  •   Request permissions

    Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells

    J. Lee, S. H. Lee, H. Ko, J. Kwon, J. H. Park, S. M. Kang, N. Ahn, M. Choi, J. K. Kim and N. Park, J. Mater. Chem. A, 2015, 3, 9179
    DOI: 10.1039/C4TA04988H

Search articles by author

Spotlight

Advertisements