Issue 6, 2015

Reply to the ‘Comment on “Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry”’ by G. Schröder-Turk, M. Fischer and S. Hyde

Abstract

A new calculation by Fischer et al. suggests that the 3etc network phase with 3D-hexagonal symmetry (space group #193: P63/mcm) may be a generic structure adopted by self-assembling soft materials, thereby broadening the context for our recent report of its spontaneous formation in lyotropic liquid crystals. The experimental observation of the 3etc phase further validates previous theoretical models used to predict its stability, provocatively suggesting that other polycontinuous network phases predicted by these methods may be discovered in the future. While these network phase morphologies are often mathematically described in terms of their underlying triply periodic minimal surfaces (TPMS), the numerous potential applications of these functional nanostructured soft materials require the development of a concise, consistent, and unambiguous nomenclature for their complete description. In this comment, we propose adoption of a nomenclature that describes each mesophase more generally in terms of the total number of non-intersecting domains into which three-dimensional space is partitioned.

Graphical abstract: Reply to the ‘Comment on “Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry”’ by G. Schröder-Turk, M. Fischer and S. Hyde

Article information

Article type
Comment
Submitted
03 Dec 2014
Accepted
12 Jan 2015
First published
12 Jan 2015

Soft Matter, 2015,11, 1228-1230

Author version available

Reply to the ‘Comment on “Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry”’ by G. Schröder-Turk, M. Fischer and S. Hyde

G. P. Sorenson and M. K. Mahanthappa, Soft Matter, 2015, 11, 1228 DOI: 10.1039/C4SM02682A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements