Facile fabrication of RGO wrapped LiMn2O4 nanorods as a cathode with enhanced specific capacity†
Abstract
A facile method with ethanol assisted dispersion combined with a magnetic stirrer to prepare reduced graphene oxide (RGO) wrapped LiMn2O4 nanorods (LNs) is presented. The results show that compared to LNs, a LNs/RGO cathode for lithium-ion batteries (LIBs) exhibits much smaller impedance and much better electrochemical performance. After coating with RGO, the initial discharge capacity can be increased from 118.9 to 143.5 mA h g−1 at 0.2C which can retain 139.2 mA h g−1 after 50 cycles; the rate discharge capacities of LNs/RGO can reach 99.5, 82.1, 56 mA h g−1 at 10, 20, 30C, respectively. The significant performance enhancement can be attributed to the synergetic effect of the LiMn2O4 nanorods matrix and the conductive graphene wrapping layers. The excellent electrochemical properties make LNs/RGO a promising cathode material for high-performance LIBs. In addition, the facile synthesis route enables mass production and can be extended to prepare other graphene wrapped anode or cathode electrodes for LIBs.
Please wait while we load your content...