Issue 52, 2015

Radical copolymerisation of chlorotrifluoroethylene with isobutyl vinyl ether initiated by the persistent perfluoro-3-ethyl-2,4-dimethyl-3-pentyl radical

Abstract

Results of the radical copolymerisation of chlorotrifluoroethylene (CTFE) with isobutyl vinyl ether (iBuVE) initiated by ˙CF3 radicals generated by β-scission of perfluoro-3-ethyl-2,4-dimethyl-3-pentyl radical (PPFR) at 90 °C in a batch reactor are reported. 19F NMR spectroscopy enabled the assessment of the molecular weights of the poly(CTFE-alt-iBuVE) copolymer by end-group analysis. It was found that, at low initiator concentrations (≤10 mol%), the ˙CF3 radicals preferably attack the vinyl ether monomer to initiate chain propagation and produce alternating poly(CTFE-alt-iBuVE) copolymers. At initiator ratios of 20 mol%, 19F NMR signals in the CF3 region other than the expected CH2–CF3 are observed and are attributed to ˙CF3 addition patterns due to kinetic effects brought on by monomer solubility. The molecular weights for the copolymer produced from 1%, 5%, and 10% PPFR were found to be 340 000, 237 000 and 122 000 g mol−1, respectively. The copolymer produced from 20% PPFR was oligomeric in nature with a molecular weight of 18 000 g mol−1.

Graphical abstract: Radical copolymerisation of chlorotrifluoroethylene with isobutyl vinyl ether initiated by the persistent perfluoro-3-ethyl-2,4-dimethyl-3-pentyl radical

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2015
Accepted
29 Apr 2015
First published
29 Apr 2015

RSC Adv., 2015,5, 41544-41554

Radical copolymerisation of chlorotrifluoroethylene with isobutyl vinyl ether initiated by the persistent perfluoro-3-ethyl-2,4-dimethyl-3-pentyl radical

G. Puts, G. Lopez, T. Ono, P. Crouse and B. Ameduri, RSC Adv., 2015, 5, 41544 DOI: 10.1039/C5RA05066A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements