Issue 32, 2015

Adsorption of chlorinated phenols on multiwalled carbon nanotubes

Abstract

This work studies the adsorption of four chlorinated phenols (2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol and pentachlorophenol) in aqueous solutions on multiwalled carbon nanotubes (MWCNT). To investigate the influence of oxygen containing functional groups, adsorption parameters for the phenols were determined for original MWCNT (OMWCNT) and functionally modified MWCNT (FMWCNT) by acid treatment for 3 h and 6 h. The correlation between phenol adsorption affinity and specific surface area (SSA) indicates that OMWCNT have higher adsorption affinities for larger molecules such as tetrachlorophenol and pentachlorophenol, which suggests that mesopore filling is not the dominant mechanism controlling their adsorption. Electrostatic repulsion between disassociated chlorinated phenols and disassociated functional groups on the surface of both FMWCNT lead to adsorption decreasing with increasing functionalisation under neutral pH conditions. On OMWCNT, a positive correlation between molecular hydrophobicity and adsorption affinity was obtained, indicating hydrophobic interactions control the adsorption of chlorinated phenols. To investigate the role of π–π interactions, Kd values (at 0.01 and 0.5 SW) were normalized by hydrophobicity. The Kd/KOW values for all MWCNT decreased from 2,4-dichlorophenol to pentachlorophenol and were negatively correlated with the electron-acceptor property of the molecules. The most pronounced π–π interactions were observed for 2,6-dichlorophenol on all MWCNT.

Graphical abstract: Adsorption of chlorinated phenols on multiwalled carbon nanotubes

Article information

Article type
Paper
Submitted
24 Feb 2015
Accepted
02 Mar 2015
First published
02 Mar 2015

RSC Adv., 2015,5, 24920-24929

Adsorption of chlorinated phenols on multiwalled carbon nanotubes

M. Kragulj, J. Tričković, Á. Kukovecz, B. Jović, J. Molnar, S. Rončević, Z. Kónya and B. Dalmacija, RSC Adv., 2015, 5, 24920 DOI: 10.1039/C5RA03395K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements