Issue 17, 2015

Contribution of dihydrouridine in folding of the D-arm in tRNA

Abstract

Posttranscriptional modifications of transfer RNAs (tRNAs) are proven to be critical for all core aspects of tRNA function. While the majority of tRNA modifications were discovered in the 1970s, their contribution in tRNA folding, stability, and decoding often remains elusive. In this work an NMR study was performed to obtain more insight in the role of the dihydrouridine (D) modification in the D-arm of tRNAiMet from S. pombe. While the unmodified oligonucleotide adopted several undefined conformations that interconvert in solution, the presence of a D nucleoside triggered folding into a hairpin with a stable stem and flexible loop region. Apparently the D modification is required in the studied sequence to fold into a stable hairpin. Therefore we conclude that D contributes to the correct folding and stability of D-arm in tRNA. In contrast to what is generally assumed for nucleic acids, the sharp ‘imino’ signal for the D nucleobase at 10 ppm in 90% H2O is not indicative for the presence of a stable hydrogen bond. The strong increase in pKa upon loss of the aromatic character in the modified nucleobase slows down the exchange of its ‘imino’ proton significantly, allowing its observation even in an isolated D nucleoside in 90% H2O in acidic to neutral conditions.

Graphical abstract: Contribution of dihydrouridine in folding of the D-arm in tRNA

Supplementary files

Article information

Article type
Paper
Submitted
28 Jan 2015
Accepted
20 Mar 2015
First published
27 Mar 2015

Org. Biomol. Chem., 2015,13, 4960-4966

Author version available

Contribution of dihydrouridine in folding of the D-arm in tRNA

N. Dyubankova, E. Sochacka, K. Kraszewska, B. Nawrot, P. Herdewijn and E. Lescrinier, Org. Biomol. Chem., 2015, 13, 4960 DOI: 10.1039/C5OB00164A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements