Issue 12, 2015

A single multifunctional nanoplatform based on upconversion luminescence and gold nanorods

Abstract

Lanthanide-doped upconverting nanoparticles (UCNPs), which convert near-infrared (NIR) light to higher energy light have been intensively studied for theranostic applications. Here, we developed a hybrid core/shell nanocomposite with multifunctional properties using a multistep strategy consisting of a gold nanorod (GNR) core with an upconverting NaYF4:Er3+, Yb3+ shell (GNR@NaYF4:Er3+, Yb3+). To use a single excitation beam, the GNR plasmon was tuned to ∼650 nm, which is resonant with the upconverted red Er3+ emission emanating from the 4F9/2 excited state. Thus, under laser irradiation at 980 nm, the intensity ratio of the upconverted green emission (arising from the 2H11/2 and 4S3/2 excited states of Er3+) showed a remarkable thermal sensitivity, which was used to calculate the temperature change due to rapid heat conversion from the GNR core. The red upconversion emission of the GNR@NaYF4:Er3+, Yb3+ core/shell nanocomposite decreased compared with the NaYF4:Er3+, Yb3+ nanoshell structure (without a GNR core), which indicates that energy transfer from NaYF4:Er3+, Yb3+ to the GNR takes place, subsequently causing a photothermal effect. The anticancer drug, doxorubicin, was loaded into the GNR@NaYF4:Er3+, Yb3+ nanocomposites and the drug release profile was evaluated. In particular, the release of doxorubicin was significantly enhanced at lower pH and higher temperature caused by the photothermal effect. This multifunctional nanocomposite, which is suitable for local heating and controlled drug release, shows strong potential for use in cancer therapy.

Graphical abstract: A single multifunctional nanoplatform based on upconversion luminescence and gold nanorods

Article information

Article type
Paper
Submitted
12 Dec 2014
Accepted
09 Feb 2015
First published
12 Feb 2015

Nanoscale, 2015,7, 5178-5185

Author version available

A single multifunctional nanoplatform based on upconversion luminescence and gold nanorods

Y. Huang, F. Rosei and F. Vetrone, Nanoscale, 2015, 7, 5178 DOI: 10.1039/C4NR07369J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements