Issue 7, 2015

Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach

Abstract

A “top-down” and scalable approach for processing carbon fiber cloth (CFC) into flexible and all-carbon electrodes with remarkable areal capacity and cyclic stability was developed. CFC is commercially available in large quantities but its use as an electrode material in supercapacitors is not satisfactory. The approach demonstrated in this work is based on the sequential treatment of CFC with KOH activation and high temperature annealing that can effectively improve its specific surface area to a remarkable 2780 m2 g−1 while at the same time achieving a good electrical conductivity of 320 S m−1 without sacrificing its intrinsic mechanical strength and flexibility. The processed CFC can be directly used as an electrode for supercapacitors without any binders, conductive additives and current collectors while avoiding elaborate electrode processing steps to deliver a specific capacitance of ∼0.5 F cm−2 and ∼197 F g−1 with remarkable rate performance and excellent cyclic stability. The properties of these processed CFCs are comparable or better than graphene and carbon nanotube based electrodes. We further demonstrate symmetric solid-state supercapacitors based on these processed CFCs with very good flexibility. This “top-down” and scalable approach can be readily applied to other types of commercially available carbon materials and therefore can have a substantial significance for high performance supercapacitor devices.

Graphical abstract: Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2014
Accepted
10 Jan 2015
First published
13 Jan 2015

Nanoscale, 2015,7, 3285-3291

Author version available

Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach

T. Zhang, C. H. J. Kim, Y. Cheng, Y. Ma, H. Zhang and J. Liu, Nanoscale, 2015, 7, 3285 DOI: 10.1039/C4NR06812B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements