Issue 5, 2015

GC-MS metabolomics on PPARα-dependent exacerbation of colitis

Abstract

Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, was found to exacerbate inflammation and tissue injury in experimental acute colitis mice. Through lipidomics analysis, bioactive sphingolipids were significantly up-regulated in the colitis group. In this study, to provide further insight into the PPARα-dependent exacerbation of colitis, gas chromatography-mass spectrometry (GC/MS) based metabolomics was employed to investigate the serum and colon of dextran sulfate sodium (DSS)-induced colitis mice treated with fenofibrate, with particular emphasis on changes in low-molecular-weight metabolites. With the aid of multivariate analysis and metabolic pathway analysis, potential metabolite markers in the amino acid metabolism, urea cycle, purine metabolism, and citrate cycle were highlighted, such as glycine, serine, threonine, malic acid, isocitric acid, uric acid, and urea. The level changes of these metabolites in either serum or colons of colitis mice were further potentiated following fenofibrate treatment. Accordingly, the expression of threonine aldolase and phosphoserine aminotransferase 1 was significantly up-regulated in colitis mice and further potentiated in fenofibrate/DSS-treated mice. It was revealed that beyond the control of lipid metabolism, PPARα also shows effects on the above pathways, resulting in enhanced protein catabolism and energy expenditure, increased bioactive sphingolipid metabolism and proinflammatory state, which were possibly related to the exacerbated colitis.

Graphical abstract: GC-MS metabolomics on PPARα-dependent exacerbation of colitis

Supplementary files

Article information

Article type
Paper
Submitted
16 Jan 2015
Accepted
09 Mar 2015
First published
11 Mar 2015

Mol. BioSyst., 2015,11, 1329-1337

Author version available

GC-MS metabolomics on PPARα-dependent exacerbation of colitis

X. Gu, Y. Song, Y. Chai, F. Lu, F. J. Gonzalez, G. Fan and Y. Qi, Mol. BioSyst., 2015, 11, 1329 DOI: 10.1039/C5MB00048C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements