Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2015
Previous Article Next Article

Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste

Author affiliations

Abstract

The supply risk for certain rare-earth elements (REEs) has sparked the development of recycling schemes for end-of-life products like fluorescent lamps. In this paper a new recycling process for lamp phosphor waste is proposed based on the use of the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N]. This innovative method allows the selective dissolution of the valuable red phosphor Y2O3:Eu3+ (YOX) without leaching the other constituents of the waste powder (other phosphors, glass particles and alumina). A selective dissolution of YOX is useful because this phosphor contains 80 wt% of the REEs although it only represents 20 wt% of the lamp phosphor waste. The proposed recycling process is a major improvement compared to currently used hydrometallurgical processes where the non-valuable halophosphate (HALO) phosphor (Sr,Ca)10(PO4)6(Cl,F)2:Sb3+,Mn2+ is inevitably leached when attempting to dissolve YOX. Since the HALO phosphor can make up as much as 50 wt% of the lamp phosphor waste powder, this consumes significant amounts of acid and complicates the further processing steps (e.g. solvent extraction). The dissolved yttrium and europium can be recovered by a single stripping step using a stoichiometric amount of solid oxalic acid or by contacting the ionic liquid with a hydrochloric acid solution. Both approaches regenerate the ionic liquid, but precipitation stripping with oxalic acid has the additional advantage that there is no loss of ionic liquid to the water phase and that the yttrium/europium oxalate can be calcined as such to reform the red Y2O3:Eu3+ phosphor (purity >99.9 wt%), effectively closing the loop after only three process steps. The red phosphor prepared from the recycled yttrium and europium showed excellent luminescent properties. The resulting recycling process for lamp phosphor waste consumes only oxalic acid and features a selective leaching, a fast stripping and an immediate revalorization step. Combined with the mild conditions, the reusability of the ionic liquid and the fact that no additional waste water is generated, this process is a very green and efficient alternative to traditional mineral acid leaching.

Graphical abstract: Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 29 Oct 2014, accepted on 25 Nov 2014 and first published on 28 Nov 2014


Article type: Paper
DOI: 10.1039/C4GC02107J
Citation: Green Chem., 2015,17, 856-868
  • Open access: Creative Commons BY license
  •   Request permissions

    Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste

    D. Dupont and K. Binnemans, Green Chem., 2015, 17, 856
    DOI: 10.1039/C4GC02107J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author