Issue 2, 2015

Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst

Abstract

A new method for the selective aerobic oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) has been developed employing a magnetically separable [γ-Fe2O3@HAP-Pd(0)] catalyst. The catalyst was prepared by the exchange of Pd2+ with Ca2+ in γ-Fe2O3@HAP, followed by reduction of the Pd2+ to Pd(0) nanoparticles, and well characterized by TEM, XRD and XPS. The catalyst showed high activity in the oxidation of HMF to FDCA in water, with 97% HMF conversion and a 92.9% yield of FDCA under optimal reaction conditions. The method developed has demonstrated some advantages, including its sole requirement of a stoichiometric base, and high catalytic performance under atmospheric oxygen, even in air. More importantly, the γ-Fe2O3@HAP-Pd(0) catalyst was readily separated from the reaction solution using an external magnetic field and was successfully reused during five consecutive reaction runs while retaining its catalytic effectiveness. This study provides a green and sustainable method for the production of valuable chemicals from renewable resources.

Graphical abstract: Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst

Article information

Article type
Paper
Submitted
22 Sep 2014
Accepted
17 Nov 2014
First published
11 Dec 2014

Green Chem., 2015,17, 1308-1317

Author version available

Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst

Z. Zhang, J. Zhen, B. Liu, K. Lv and K. Deng, Green Chem., 2015, 17, 1308 DOI: 10.1039/C4GC01833H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements