Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Volume 189, 2016
Previous Article Next Article

Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors

Author affiliations

Abstract

Source contributions of organic aerosol (OA) are still not fully understood, especially in terms of quantitative distinction between secondary OA formed from anthropogenic precursors vs. that formed from natural precursors. In order to investigate the OA origin, a field campaign was carried out in Barcelona in summer 2013, including two periods characterized by low and high traffic conditions. Volatile organic compound (VOC) concentrations were higher during the second period, especially aromatic hydrocarbons related to traffic emissions, which showed a marked daily cycle peaking during traffic rush hours, similarly to black carbon (BC) concentrations. Biogenic VOC (BVOC) concentrations showed only minor changes from the low to the high traffic period, and their intra-day variability was related to temperature and solar radiation cycles, although a decrease was observed for monoterpenes during the day. The organic carbon (OC) concentrations increased from the first to the second period, and the fraction of non-fossil OC as determined by 14C analysis increased from 43% to 54% of the total OC. The combination of 14C analysis and Aerosol Chemical Speciation Monitor (ACSM) OA source apportionment showed that the fossil OC was mainly secondary (>70%) except for the last sample, when the fossil secondary OC only represented 51% of the total fossil OC. The fraction of non-fossil secondary OC increased from 37% of total secondary OC for the first sample to 60% for the last sample. This enhanced formation of non-fossil secondary OA (SOA) could be attributed to the reaction of BVOC precursors with NOx emitted from road traffic (or from its nocturnal derivative nitrate that enhances night-time semi-volatile oxygenated OA (SV-OOA)), since NO2 concentrations increased from 19 to 42 μg m−3 from the first to the last sample.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 18 Nov 2015, accepted on 08 Dec 2015 and first published on 08 Dec 2015


Article type: Paper
DOI: 10.1039/C5FD00182J
Citation: Faraday Discuss., 2016,189, 337-359
  • Open access: Creative Commons BY license
  •   Request permissions

    Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors

    M. C. Minguillón, N. Pérez, N. Marchand, A. Bertrand, B. Temime-Roussel, K. Agrios, S. Szidat, B. van Drooge, A. Sylvestre, A. Alastuey, C. Reche, A. Ripoll, E. Marco, J. O. Grimalt and X. Querol, Faraday Discuss., 2016, 189, 337
    DOI: 10.1039/C5FD00182J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author