Jump to main content
Jump to site search

Issue 1, 2016
Previous Article Next Article

A scanning probe investigation of the role of surface motifs in the behavior of p-WSe2 photocathodes

Author affiliations

Abstract

The spatial variation in the photoelectrochemical performance for the reduction of an aqueous one-electron redox couple, Ru(NH3)63+/2+, and for the evolution of H2(g) from 0.5 M H2SO4(aq) at the surface of bare or Pt-decorated p-type WSe2 photocathodes has been investigated in situ using scanning photocurrent microscopy (SPCM). The measurements revealed significant differences in the charge-collection performance (quantified by the values of external quantum yields, Φext) on various macroscopic terraces. Local spectral response measurements indicated a variation in the local electronic structure among the terraces, which was consistent with a non-uniform spatial distribution of sub-band-gap states within the crystals. The photoconversion efficiencies of Pt-decorated p-WSe2 photocathodes were greater for the evolution of H2(g) from 0.5 M H2SO4 than for the reduction of Ru(NH3)63+/2+, and terraces that exhibited relatively low values of Φext for the reduction of Ru(NH3)63+/2+ could in some cases yield values of Φext for the evolution of H2(g) comparable to the values of Φext yielded by the highest-performing terraces. Although the spatial resolution of the techniques used in this work frequently did not result in observation of the effect of edge sites on photocurrent efficiency, some edge effects were observed in the measurements; however the observed edge effects differed among edges, and did not appear to determine the performance of the electrodes.

Graphical abstract: A scanning probe investigation of the role of surface motifs in the behavior of p-WSe2 photocathodes

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 17 Aug 2015, accepted on 08 Oct 2015 and first published on 08 Oct 2015


Article type: Paper
DOI: 10.1039/C5EE02530C
Citation: Energy Environ. Sci., 2016,9, 164-175
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    A scanning probe investigation of the role of surface motifs in the behavior of p-WSe2 photocathodes

    J. M. Velazquez, J. John, D. V. Esposito, A. Pieterick, R. Pala, G. Sun, X. Zhou, Z. Huang, S. Ardo, M. P. Soriaga, B. S. Brunschwig and N. S. Lewis, Energy Environ. Sci., 2016, 9, 164
    DOI: 10.1039/C5EE02530C

Search articles by author