Issue 41, 2015

Slow magnetic relaxation of light lanthanide-based linear LnZn2 trinuclear complexes

Abstract

Four isostructural LnZn2 trinuclear complexes, [Ln(NO3){Zn(L)(SCN)}2] (H2L is a Schiff base ligand derived from o-vanillin and ethylenediamine), were synthesized, which include light lanthanide ions as spin carriers (Ln = Ce 1, Pr 2, Nd 3, and Sm 4). These complexes involve a linear Zn(II)–Ln(III)–Zn(II) array, which leads to an axially stressed ligand field and can also cause single-moleluce magnet (SMM) behavior in oblate-type electronic distributions of ground sublevels found in Ce(III), Pr(III), and Nd(III). Slow magnetic relaxation behavior was observed in 1 and 3 under an applied bias dc field of 1000 Oe, whereas such a slow relaxation was not observed in 2 and 4. The appearance of field-induced SMM behavior in 1 and 3 was correlated with the even-numbered Jz sublevels of Ce(III) and Nd(III) ions known as the Kramers system.

Graphical abstract: Slow magnetic relaxation of light lanthanide-based linear LnZn2 trinuclear complexes

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2015
Accepted
19 Sep 2015
First published
23 Sep 2015

Dalton Trans., 2015,44, 18276-18283

Author version available

Slow magnetic relaxation of light lanthanide-based linear LnZn2 trinuclear complexes

C. Takehara, P. L. Then, Y. Kataoka, M. Nakano, T. Yamamura and T. Kajiwara, Dalton Trans., 2015, 44, 18276 DOI: 10.1039/C5DT03148F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements