Issue 5, 2015

Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone

Abstract

Size-confined Pt nanoparticles of about 1.5 nm have been introduced into [Al]MCM-41 supports with similar acid strength but various population densities of acid sites by means of wet impregnation. The Pt nanoparticles covered preferentially the surface Brønsted acid sites (BAS) of the supports or were located near acid sites rather than on the bigger free space between acid sites even at a very low acid density (6 BAS per 1000 nm2). The free BAS around the Pt particles did not interact with Pt atoms and the electronic properties of the Pt nanoparticles as probed by DRIFTS combined with CO adsorption were similar for Pt/[Al]MCM-41 with and without nearby free BAS. Ionic effects were generated by the Pt-covered acid sites, whereas the population of BAS did not contribute significantly to the ionic effects induced on the Pt nanoparticles. The coverage of BAS of similar strength by platinum nanoparticles led to similar chemoselectivity and product distribution in acetophenone (Aph) hydrogenation, though the density of BAS on the supports increased by more than 11 times. However, increasing the number of BAS on the supports significantly changed the hydrogenation rate. TOFs continuously increased from 125 h−1 up to 534 h−1, when the population of free BAS increased from 18.2 BAS per 1000 nm2 to 39.9 BAS per 1000 nm2. When the free BAS density was further increased to 70.4 BAS per 1000 nm2, the TOF then dropped to 176 h−1. The hydrogenation pathway is similar for both monofunctional (Pt covering all BAS) and bifunctional catalysts (Pt with free BAS), and the reaction was initiated on the Pt surface. This finding indicates that proper tuning of the population density of acid sites on the support can significantly improve the catalytic performance of the supported metal catalysts while keeping similar product selectivities.

Graphical abstract: Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2015
Accepted
05 Mar 2015
First published
05 Mar 2015

Catal. Sci. Technol., 2015,5, 2788-2797

Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone

Z. Wang, K. Kim, C. Zhou, M. Chen, N. Maeda, Z. Liu, J. Shi, A. Baiker, M. Hunger and J. Huang, Catal. Sci. Technol., 2015, 5, 2788 DOI: 10.1039/C5CY00214A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements