Issue 38, 2015

Fractional photo-current dependence of graphene quantum dots prepared from carbon nanotubes

Abstract

We report on the photo-conductivity studies of chemically synthesized graphene quantum dots (GQDs) of average size 12 nm obtained by the oxidative acid treatment of MWCNTs. The dependence of photocurrent Iph (Iph = IillIdark) on the laser intensity P under a wide range of laser intensities (5 mW ≤ P ≤ 60 mW) shows a fractional power dependence of Iph on light intensity. The temperature dependence (300 K < T < 50 K) of Iph observed in thin films of these GQDs indicates that in the higher temperature region (T > ∼100 K), as the temperature increases, the number of thermally generated carriers increase resulting in increased Iph. At sufficiently low temperatures (T ≤ 100 K), a constant Iph is observed, indicating a constant photo-carrier density. Such a behavior is typically observed in many photoactive disordered semiconductors, which are often used in a variety of applications. We believe that the investigations presented here will enhance our understanding of the photocurrent generation phenomenon in chemically obtained GQDs.

Graphical abstract: Fractional photo-current dependence of graphene quantum dots prepared from carbon nanotubes

Supplementary files

Article information

Article type
Communication
Submitted
08 Jun 2015
Accepted
24 Aug 2015
First published
26 Aug 2015

Phys. Chem. Chem. Phys., 2015,17, 24566-24569

Author version available

Fractional photo-current dependence of graphene quantum dots prepared from carbon nanotubes

S. Kundu, S. Ghosh, M. Fralaide, T. N. Narayanan, V. K. Pillai and S. Talapatra, Phys. Chem. Chem. Phys., 2015, 17, 24566 DOI: 10.1039/C5CP03306C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements