Real time observation of the excimer formation dynamics of a gas phase benzene dimer by picosecond pump–probe spectroscopy
Abstract
We observed the real-time excimer (EXC) formation dynamics of a gas phase benzene dimer (Bz2) cluster after photo-excitation to the S1 state by applying an ionization detected picosecond transient absorption method for probing the visible EXC absorption for the first time. The time evolution of the EXC absorption from the S1 00 level shows a rise that is well fitted by a single exponential function with a time constant of 18 ± 2 ps. The structure of the Bz dimer has a T-shaped structure in the ground electronic state, and that in the EXC state is a parallel sandwich (SW) structure. Thus, the observed rise time corresponds to the structural change from the T to the SW structures, which directly shows the EXC formation. On the other hand, the EXC formation after excitation of the S1 61 vibrational level of the stem site showed a faster rise of the time constant of 10 ± 2 ps. Supposing equilibrium between the EXC and the local excited states, it followed that the intramolecular vibrational energy redistribution rate of the 61 level is largely enhanced and becomes faster than the EXC formation reaction.
- This article is part of the themed collection: Optical spectroscopy coupled with mass spectrometry methods