Issue 29, 2015

Molecular dynamics of NH3 induced by core-electron excitation

Abstract

Nuclear motion in the N1s−14a11 core-excited state of ammonia is investigated by studying the angular anisotropy of fragments produced in the decay of the highly excited molecule and compared with predictions from ab initio calculations. Two different fragmentation channels (H+/NH2+ and H+/NH+/H) reveal complex nuclear dynamics as the excitation photon energy is tuned through the 4a1 resonance. The well-defined angular anisotropy of the fragments produced in the dissociation of the molecular dication species suggests a very rapid nuclear motion and the time scale of the nuclear dynamics is limited to the low fs timescale.

Graphical abstract: Molecular dynamics of NH3 induced by core-electron excitation

Article information

Article type
Paper
Submitted
22 May 2015
Accepted
23 Jun 2015
First published
25 Jun 2015
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2015,17, 18944-18952

Molecular dynamics of NH3 induced by core-electron excitation

N. Walsh, A. Sankari, J. Laksman, T. Andersson, S. Oghbaie, F. Afaneh, E. P. Månsson, M. Gisselbrecht and S. L. Sorensen, Phys. Chem. Chem. Phys., 2015, 17, 18944 DOI: 10.1039/C5CP02959G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements