Issue 17, 2015

Pore collapse and regrowth in silicon electrodes for rechargeable batteries

Abstract

Structure and composition of an 11 nm thick amorphous silicon (a-Si) thin film anode, capped with 4 nm of alumina are measured, in operando, by neutron reflectivity (NR) and electrochemical impedance spectroscopy in a lithium half-cell. NR data are analyzed to quantify the a-Si thickness and composition at various states of charge over six cycles. The a-Si anode expands and contracts upon lithiation and delithiation, respectively, while maintaining its integrity and low interfacial roughness (≤1.6 nm) throughout the cycling. The apparently non-linear expansion of the a-Si layer volume versus lithium content agrees with previous thin-film a-Si anode studies. However, a proposed pore collapse and regrowth (PCRG) mechanism establishes that the solid domains in the porous LixSi film expand linearly with Li content at 8.48 cm3 mol−1 Li, similar to crystalline Si. In the PCRG model, porosity is first consumed by expansion of solid domains upon lithiation, after which the film as a whole expands. Porosity is reestablished at 5–28% upon delithiation. Data show that the alumina protective layer on the a-Si film functions as an effective artificial solid electrolyte interphase (SEI), maintaining its structural integrity, low interfacial roughness, and relatively small transport resistance. No additional spontaneously-formed SEI is observed in this study.

Graphical abstract: Pore collapse and regrowth in silicon electrodes for rechargeable batteries

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2014
Accepted
17 Mar 2015
First published
23 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 11301-11312

Pore collapse and regrowth in silicon electrodes for rechargeable batteries

S. C. DeCaluwe, B. M. Dhar, L. Huang, Y. He, K. Yang, J. P. Owejan, Y. Zhao, A. A. Talin, J. A. Dura and H. Wang, Phys. Chem. Chem. Phys., 2015, 17, 11301 DOI: 10.1039/C4CP06017B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements