Issue 9, 2015

Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO

Abstract

A computational strategy for calibrating, validating and analyzing molecular dynamics (MD) simulations to predict dynamic nuclear polarization (DNP) coupling factors and relaxivities of proton spins is presented. Simulations of the polarizing agent TEMPOL in liquid acetone and DMSO are conducted at low (infinite dilution) and high (1 M) concentrations of the free radical. Because DNP coupling factors and relaxivities are sensitive to the time scales of the molecular motions, the MD simulations are calibrated to reproduce the bulk translational diffusion coefficients of the pure solvents. The simulations are then validated by comparing with experimental dielectric relaxation spectra, which report on the rotational dynamics of the molecular electric dipole moments. The analysis consists of calculating spectral density functions (SDFs) of the magnetic dipole–dipole interaction between the electron spin of TEMPOL and nuclear spins of the solvent protons. Here, MD simulations are used in combination with an analytically tractable model of molecular motion. While the former provide detailed information at relatively short spin–spin distances, the latter includes contributions at large separations, all the way to infinity. The relaxivities calculated from the SDFs of acetone and DMSO are in excellent agreement with experiments at 9.2 T. For DMSO we calculate a coupling factor in agreement with experiment while for acetone we predict a value that is larger by almost 50%, suggesting a possibility for experimental improvement.

Graphical abstract: Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2014
Accepted
23 Jan 2015
First published
28 Jan 2015

Phys. Chem. Chem. Phys., 2015,17, 6618-6628

Author version available

Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO

S. E. Küçük, P. Neugebauer, T. F. Prisner and D. Sezer, Phys. Chem. Chem. Phys., 2015, 17, 6618 DOI: 10.1039/C4CP05832A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements