Issue 14, 2015

Computational investigations of the thermodynamic properties of size-selected water and Ar–water clusters: high-pressure transitions

Abstract

Classical parallel-tempering Monte Carlo simulations in the isothermal–isobaric ensemble were carried out for the (H2O)20 and Ar(H2O)20 clusters, over a wide range of temperatures (30–1000 K) and pressures (3 kPa–10 GPa) in order to study their thermodynamic properties and structural changes. The TIP4P/ice water model is employed for the water–water interactions, while both semiempirical and ab initio-based potentials are used to model the interaction between the rare-gas atoms and the water molecules. Temperature–pressure phase diagrams for these cluster systems were constructed by employing a two-dimensional multiple-histogram method. Structural changes were detected by analyzing the heat capacity landscape and the Pearson correlation coefficient profile for the interaction energy and volume. Those at high pressure correspond to solid-to-solid transitions and are found to be related to clathrate-like cages around the Ar atom. It is also shown that the formation and thermodynamic stability of such structures are determined by the intermolecular interaction between the rare-gas atoms and the host water molecules.

Graphical abstract: Computational investigations of the thermodynamic properties of size-selected water and Ar–water clusters: high-pressure transitions

Article information

Article type
Paper
Submitted
24 Oct 2014
Accepted
23 Feb 2015
First published
23 Feb 2015

Phys. Chem. Chem. Phys., 2015,17, 8792-8801

Author version available

Computational investigations of the thermodynamic properties of size-selected water and Ar–water clusters: high-pressure transitions

A. Vítek, D. J. Arismendi-Arrieta, R. Rodríguez-Cantano, R. Prosmiti, P. Villarreal, R. Kalus and G. Delgado-Barrio, Phys. Chem. Chem. Phys., 2015, 17, 8792 DOI: 10.1039/C4CP04862H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements