Issue 33, 2015

The pivotal role of oxygen interstitials in the dynamics of growth and movement of germanium nanocrystallites

Abstract

We report an unusual “symbiotic” behavior of oxygen interstitials acting in concert with Ge and Si interstitials at high temperature inducing morphology changes and autonomous migration of Ge nanocrystallites within SiO2/Si3N4 layers. The Ge nanocrystallites were originally generated by the selective oxidation of SiGe nano-pillars grown and lithographically patterned over buffer Si3N4 layers on Si substrates. The coalescence and movement of these Ge nanocrystallites appear to be very sensitive to the presence and flux of oxygen interstitials especially at the Ge nanocrystallite/buffer Si3N4 interface. A range of different morphologies are observed for Ge nanocrystallites that are directly attributable to the influence of oxygen interstitial concentration and consequently the interstitial Si and Ge concentrations. In combination with Si and Ge interstitials, oxygen interstitials activate the coalescence of sparsely-distributed Ge nanocrystallites and concurrently their migration towards the source of Si interstitials, i.e. the buffer Si3N4 layers, through catalytically-enhanced local decomposition and subsequent oxidation of both the SiO2 and Si3N4 buffer layers. We also show that these symbiotic effects are “tunable” by increasing the Ge content of the SiGe nano-pillars. Dense distributions of Ge nanocrystallites generated from high Ge content SiGe nano-pillars remain static and they show no changes in their morphology possibly because oxygen interstitials are simply unable to penetrate these clusters and consequently incapable of inducing symbiotic Si and Ge interstitial generation.

Graphical abstract: The pivotal role of oxygen interstitials in the dynamics of growth and movement of germanium nanocrystallites

Article information

Article type
Paper
Submitted
23 May 2015
Accepted
12 Jul 2015
First published
14 Jul 2015

CrystEngComm, 2015,17, 6370-6375

Author version available

The pivotal role of oxygen interstitials in the dynamics of growth and movement of germanium nanocrystallites

K. H. Chen, C. C. Wang, W. T. Lai, T. George and P. W. Li, CrystEngComm, 2015, 17, 6370 DOI: 10.1039/C5CE00991J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements