Jump to main content
Jump to site search

Issue 21, 2015
Previous Article Next Article

Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

Author affiliations

Abstract

Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In this study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. The CNS growth was characterized on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 μM dopamine while carbon nanospike coated wires could. The highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 ± 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller ΔEp for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.

Graphical abstract: Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Jul 2015, accepted on 14 Sep 2015 and first published on 14 Sep 2015


Article type: Paper
DOI: 10.1039/C5AN01467K
Citation: Analyst, 2015,140, 7283-7292
  •   Request permissions

    Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

    A. G. Zestos, C. Yang, C. B. Jacobs, D. Hensley and B. J. Venton, Analyst, 2015, 140, 7283
    DOI: 10.1039/C5AN01467K

Search articles by author

Spotlight

Advertisements