Jump to main content
Jump to site search

Issue 37, 2014
Previous Article Next Article

Biomimetic nanopore for sensitive and selective detection of Hg(II) in conjunction with single-walled carbon nanotubes

Author affiliations

Abstract

In this article, we propose a new method for selective detection of Hg2+ based on a biomimetic nanopore sensing platform in combination with single-walled carbon nanotubes (SWNTs). As is well known, folded DNA in the presence of Hg2+ can be separated from single-stranded DNA through SWNTs, and the folded DNA can be quantitated with cone-shaped nanopore whose surface was coated by polyethyleneimine (PEI)/Zr4+. Both sensitivity and selectivity based on this paradigm can be guaranteed without immobilization of probes on the nanopore surface. This approach can warrant the detection limit for Hg2+ down to 8.3 nM (S/N = 3) with high selectivity against other metal ions. Moreover, the application of the sensor for lake water shows that the proposed method works well for real samples. This research demonstrates an alternative approach to detect targets of interest that holds high prospects for detecting other biomolecules or metal ions in the near future.

Graphical abstract: Biomimetic nanopore for sensitive and selective detection of Hg(ii) in conjunction with single-walled carbon nanotubes

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 May 2014, accepted on 19 Jul 2014 and first published on 23 Jul 2014


Article type: Paper
DOI: 10.1039/C4TB00844H
Author version available: Download Author version (PDF)
Citation: J. Mater. Chem. B, 2014,2, 6371-6377
  •   Request permissions

    Biomimetic nanopore for sensitive and selective detection of Hg(II) in conjunction with single-walled carbon nanotubes

    Q. Zhai, S. Zhang, H. Jiang, Q. Wei, E. Wang and J. Wang, J. Mater. Chem. B, 2014, 2, 6371
    DOI: 10.1039/C4TB00844H

Search articles by author

Spotlight

Advertisements