pH-controlled release of substrates from mesoporous SiO2 nanoparticles gated by metal ion-dependent DNAzymes†
Abstract
The pH-controlled release of substrates from mesoporous SiO2 nanoparticles, MP–SiO2 NPs, is demonstrated by capping the pores with the Mg2+- or UO22+-dependent DNAzyme sequences and unlocking of the pores with Mg2+ ions or UO22+ ions at appropriate pH values. While the Mg2+-dependent DNAzyme reveals high activity at pH = 7.2, moderate activity at pH = 6.0, and it lacks activity at pH = 5.2, the UO22+-dependent DNAzyme reveals high activity at pH = 5.2, moderate activity at pH = 6.0, and it is catalytically inactive at pH = 7.2. Accordingly, the MP–SiO2 NPs were loaded with methylene blue, MB+, or thionine, Th+, and locked in the pores by the Mg2+- and UO22+-dependent DNAzyme sequences, respectively. The pH-programmed release of MB+ or Th+ from the loaded NPs proceeds, in the presence of Mg2+ ions or UO22+ ions, at pH = 7.2 and pH = 5.2, using the Mg2+- and UO22+-dependent DNAzyme as catalysts that cleave the protecting caps and unlock the pores, respectively. At pH = 6.0 the MB+- and Th+-loaded NPs are concomitantly unlocked by the two DNAzymes. The unlocking processes are selective and other metal ions do not stimulate the release processes.
                                            Please wait while we load your content...