Issue 18, 2014

Superior supercapacitive performance in electrospun copper oxide nanowire electrodes

Abstract

Copper oxide (CuO) nanowires of diameter ∼30–50 nm were developed by an aqueous polymeric solution based electrospinning process and their structural, morphological, and electrochemical properties were studied with the aim to fabricate high performance supercapacitor devices. The wires consist of densely packed cuboidal particles of size ∼10 nm characterized by a low degree of crystal defects. Supercapacitor electrodes were fabricated on nickel foam substrates using 75 wt% CuO in 15 wt% conducting carbon and 10 wt% polyvinylidene fluoride. The supercapacitive properties of the electrodes were evaluated in a three-electrode configuration in aqueous electrolytes, viz. KOH and LiOH, employing cyclic voltammetry (CV), charge–discharge cycling (CDC) and electrochemical impedance spectroscopy (EIS). A record specific capacitance (CS) is observed for the present electrospun CuO nanowires: CS ∼ 620 F g−1 in KOH and 581 F g−1 in LiOH at a current density of 2 A g−1 with a Coulombic efficiency of ∼100%. Compared with the previous results on the electrochemical stability of CuO nanostructures, the material electrospun using an aqueous polymeric solution showed a much higher operational stability (98% at the end of 1000 cycles and 92% at the end of 2000 cycles) owing to its superior crystallinity. The electrochemical properties of the electrodes were determined using EIS to validate the CV and CDC results.

Graphical abstract: Superior supercapacitive performance in electrospun copper oxide nanowire electrodes

Supplementary files

Article information

Article type
Paper
Submitted
19 Dec 2013
Accepted
10 Feb 2014
First published
10 Feb 2014

J. Mater. Chem. A, 2014,2, 6578-6588

Author version available

Superior supercapacitive performance in electrospun copper oxide nanowire electrodes

B. Vidhyadharan, I. I. Misnon, R. A. Aziz, K. P. Padmasree, M. M. Yusoff and R. Jose, J. Mater. Chem. A, 2014, 2, 6578 DOI: 10.1039/C3TA15304E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements