Issue 32, 2014

Trapping and release of giant unilamellar vesicles in microfluidic wells

Abstract

We describe the trapping and release of giant unilamellar vesicles (GUVs) in a thin and wide microfluidic channel, as they cross indentations etched in the channel ceiling. This trapping results from the reduction of the membrane elastic energy, which is stored in the GUV as it squeezes to enter into the thin channel. We demonstrate that GUVs whose diameter is slightly larger than the channel height can be trapped and that they can be untrapped by flowing the outer fluid beyond a critical velocity. GUVs smaller than the channel height flow undisturbed while those much larger cannot squeeze into the thin regions. Within the range that allows trapping, larger GUVs are anchored more strongly than smaller GUVs. The ability to trap vesicles provides optical access to the GUVs for extended periods of time; this allows the observation of recirculation flows on the surface of the GUVs, in the forward direction near the mid-plane of the channel and in the reverse direction elsewhere. We also obtain the shape of GUVs under different flow conditions through confocal microscopy. This geometric information is used to derive a mechanical model of the force balance that equates the viscous effects from the outer flow with the elastic effects based on the variation of the membrane stretching energy. This model yields good agreement with the experimental data when values of the stretching moduli are taken from the scientific literature. This microfluidic approach provides a new way of storing a large number of GUVs at specific locations, with or without the presence of an outer flow. As such, it constitutes a high-throughput alternative to micropipette manipulation of individual GUVs for chemical or biological applications.

Graphical abstract: Trapping and release of giant unilamellar vesicles in microfluidic wells

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2014
Accepted
30 Apr 2014
First published
02 May 2014

Soft Matter, 2014,10, 5878-5885

Trapping and release of giant unilamellar vesicles in microfluidic wells

A. Yamada, S. Lee, P. Bassereau and C. N. Baroud, Soft Matter, 2014, 10, 5878 DOI: 10.1039/C4SM00065J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements