Issue 14, 2014

Micro-topography influences blood platelet spreading

Abstract

Injuries in blood vessels are accompanied by disrupted endothelial cell layers. Missing or destroyed endothelial cells lead to rough, structured surfaces on the micrometer scale. The first cells to arrive at the site of injury and to cover the wound are platelets, which subsequently drive blood clot formation. Therefore, investigating the interactions of platelets with structured surfaces is essential for the understanding of blood clotting. Here, we study the effects of underlying topography on platelet spreading using microstructured model substrates with varying area fractions of protein coating. We thereby distinguish the effects of (physical) topography and of (biochemical) protein availability. By analyzing the cell area and morphology, we find that the extent of protrusion formation – but not the total spread area – is determined by the area fractions of coating. The extent of filopodia formation is influenced by the availability of binding sites and the reaction of cells to the substrate's topography. The cells react to the structured substrate by avoiding topographic holes at the cell periphery and thus adapting their outer shape. This finding leads us to the conclusion that both chemically blocked and fibrinogen-coated holes represent “energetic obstacles” to the cells. Thus, the shape of the cell is governed by the interplay between spreading to an optimized area and adaption to the substrate topography.

Graphical abstract: Micro-topography influences blood platelet spreading

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2013
Accepted
23 Oct 2013
First published
23 Oct 2013

Soft Matter, 2014,10, 2365-2371

Micro-topography influences blood platelet spreading

R. Sandmann, S. S. G. Henriques, F. Rehfeldt and S. Köster, Soft Matter, 2014, 10, 2365 DOI: 10.1039/C3SM52636D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements