Issue 96, 2014

Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows

Abstract

The light-to-heat conversion efficiency of gold nanorods (GNRs) with surface plasmon resonances in the first (700–950 nm) and second (1000–1350 nm) biological windows has been studied by Quantum Dot based Fluorescence Nanothermometry. It has been found that red-shifting the GNR longitudinal surface plasmon resonance wavelength (λSPR) from the first to the second biological window is accompanied by a remarkable (close to 40%) reduction in their heating efficiency. Based on numerical simulations, we have concluded that this lower heating efficiency is caused by a reduction in the absorption efficiency (ratio between absorption and extinction cross sections). Thermal stability and ex vivo experiments have corroborated that GNRs with λSPR at around 800 nm seem to be especially suitable for efficient photothermal therapies with minimum collateral effects.

Graphical abstract: Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2014
Accepted
10 Oct 2014
First published
10 Oct 2014

RSC Adv., 2014,4, 54122-54129

Author version available

Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows

L. M. Maestro, E. Camarillo, J. A. Sánchez-Gil, R. Rodríguez-Oliveros, J. Ramiro-Bargueño, A. J. Caamaño, F. Jaque, J. G. Solé and D. Jaque, RSC Adv., 2014, 4, 54122 DOI: 10.1039/C4RA08956A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements