CO2 atmosphere-enhanced methanol aromatization over the NiO-HZSM-5 catalyst
Abstract
The aromatization of methanol over parent HZSM-5 and the modified NiO-HZSM-5 in a fixed-bed reactor was investigated under CO2 and N2 flow. The as-prepared catalysts were characterized by H2-TPR, XRD, BET, NH3-TPD, CO2-TPD and probe-molecule reaction. Compared with parent HZSM-5 in CO2 or N2 flow and with NiO-HZSM-5 in N2 flow, NiO-HZSM-5 showed greatly improved aromatization activity and BTX (benzene, toluene and xylene) yield in CO2 atmosphere. This is attributed to the cooperation of acid sites with the activated CO2 (over NiO species), which not only can effectively promote dehydrogenation of alkanes to form olefin intermediates, but also can accelerate dehydrogenation in the conversion of olefin intermediates to aromatics. In particular, an optimized NiO-HZSM-5 with 2.0 wt% NiO loading showed 50.1% total aromatic yield and 35.5% BTX yield in CO2 atmosphere. It also showed high catalytic stability resulting from the restriction of coking due to its acidity, carbonaceous elimination by the activated CO2-reacting deposited coke, and the suppressed reduction of highly active NiO species by activated CO2.