Issue 55, 2014

On the dynamics of kefir volatome

Abstract

Probiotic drinks constitute an important component of the daily diet in the modern society. They contain active microbial strains, which contribute to the chemical composition of these dairy products. The metabolic activity of microbes can affect the flavor and smell of probiotic drinks at room temperature. “Kefir” is an example of fermented milk, which contains various species of bacteria as well as fungi (yeast). In order to gain a better understanding of the metabolic processes shaping the chemical composition of kefir drinks, in the present study, we perform a comparative analysis of volatomes of kefir and single-species cultures of Saccharomyces cerevisiae. Gas chromatography coupled with mass spectrometry enabled the monitoring of volatile metabolites collected onto solid phase microextraction fibres (divenylbenzene/carboxen/polydimethylsiloxane). The temporal profiles of secondary metabolites (isopentyl acetate, ethyl hexanoate, ethyl octanoate, phenethyl acetate, and ethyl decanoate), present in S. cerevisiae cultures and commercial kefir, exhibit similarity. This points to a significant contribution of Saccharomyces strains on the dynamics of the chemical composition of kefir during storage at ambient conditions. On the other hand, commercial yogurt, which contains various species of bacteria but not yeast is much more chemically stable and does not exhibit rapid changes in the ester-type metabolites, which are typical of kefir.

Graphical abstract: On the dynamics of kefir volatome

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2014
Accepted
10 Jun 2014
First published
10 Jun 2014

RSC Adv., 2014,4, 28865-28870

On the dynamics of kefir volatome

J. Hu, S. Gunathilake, Y. Chen and P. L. Urban, RSC Adv., 2014, 4, 28865 DOI: 10.1039/C4RA02990A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements