Issue 30, 2014

Facile surface modification of high-voltage lithium-ion battery cathode materials with electroconductive zinc antimonate colloidal nanoparticles

Abstract

The high-voltage cell approach has garnered a great deal of attention as a simple and effective way to increase the energy density of lithium-ion batteries. Here, we demonstrate a new class of surface modification based on electroconducitve zinc antimonate (AZO, ZnSb2O6) colloidal nanoparticles as a facile and scalable interface engineering strategy for high-voltage cathode materials. The electroconductive AZO colloidal nanoparticles are directly introduced on the surface of cathode materials via simple one-pot solution coating followed by post heat-treatment, in contrast to traditional surface modification using metal oxide precursors that often requires complex sol–gel reaction and high-temperature calcination. LiCoO2 (LCO) powder is chosen as a model cathode material to explore the feasibility of AZO nanoparticle coatings. A salient feature of the AZO nanoparticle layers, as compared to conventional metal oxides-based coating layers that are electrically inert, is the provision of electronic conduction, which thus boosts the electronic conductivity of LCO powders. This beneficial effect of the AZO nanoparticle layers, in collaboration with their contribution to suppressing unwanted interfacial side reactions between delithiated LCO and liquid electrolytes, enables significant improvement in high-voltage (here, 4.4 V) cell performance (AZO nanoparticle-deposited LCO (AZO–LCO) vs. pristine LCO: capacity retention after 50th cycle = 84% vs. 28%, discharge rate capability (2.0 C/0.2 C) = 78% vs. 55%). The potential application of AZO–LCO in high-voltage cells is also discussed with an in-depth consideration of the variation in AC impedance and electrode polarization of cells during cycling.

Graphical abstract: Facile surface modification of high-voltage lithium-ion battery cathode materials with electroconductive zinc antimonate colloidal nanoparticles

Article information

Article type
Communication
Submitted
18 Feb 2014
Accepted
17 Mar 2014
First published
18 Mar 2014

RSC Adv., 2014,4, 15630-15634

Facile surface modification of high-voltage lithium-ion battery cathode materials with electroconductive zinc antimonate colloidal nanoparticles

E. Lee, J. Cho, J. Kim, J. Park and S. Lee, RSC Adv., 2014, 4, 15630 DOI: 10.1039/C4RA01423E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements