Jump to main content
Jump to site search

Issue 17, 2014
Previous Article Next Article

Highly pH-sensitive polyurethane exhibiting shape memory and drug release

Author affiliations

Abstract

In this study, a highly pH-sensitive polymer is synthesised by introducing pyridine rings into the backbone of polyurethane. The chemical structures of the resulting materials are confirmed by FT-IR and 1H-NMR spectroscopy. To analyse the mechanism of the pH sensitivity of this polymer, its structural transformations under acidic and basic conditions are studied by FT-IR spectroscopy, theoretical calculations and 1H-NMR spectroscopy. We observe that the mechanism of pH responsiveness is the formation of a hydrogen bond interaction between the N atom of the pyridine ring and H–N of urethane in neutral or alkaline environments which is disrupted under acidic conditions due to the protonation of the pyridine ring. The pH-sensitivity is demonstrated by simply adjusting the pH value of the environment, which can act as a switch to control shape memory and drug release. Unlike other systems with thermally sensitive behaviour, the shape memory functionality of this material is independent of temperature, which is dependent only on the variation in the pH of the environment. This strategy provides a potent tool for the design of multifunctional materials based on the physiological environment to fulfil the complex requirements of drug delivery and tissue engineering systems.

Graphical abstract: Highly pH-sensitive polyurethane exhibiting shape memory and drug release

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Apr 2014, accepted on 01 May 2014 and first published on 02 May 2014


Article type: Paper
DOI: 10.1039/C4PY00474D
Author version available: Download Author version (PDF)
Citation: Polym. Chem., 2014,5, 5168-5174
  •   Request permissions

    Highly pH-sensitive polyurethane exhibiting shape memory and drug release

    H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang and S. Zhou, Polym. Chem., 2014, 5, 5168
    DOI: 10.1039/C4PY00474D

Search articles by author

Spotlight

Advertisements