Issue 17, 2014

Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma

Abstract

We have demonstrated that the electrical property of single-layer molybdenum disulfide (MoS2) can be significantly tuned from the semiconducting to the insulating regime via controlled exposure to oxygen plasma. The mobility, on-current and resistance of single-layer MoS2 devices were varied by up to four orders of magnitude by controlling the plasma exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and density functional theory studies suggest that the significant variation of electronic properties is caused by the creation of insulating MoO3-rich disordered domains in the MoS2 sheet upon oxygen plasma exposure, leading to an exponential variation of resistance and mobility as a function of plasma exposure time. The resistance variation calculated using an effective medium model is in excellent agreement with the measurements. The simple approach described here can be used for the fabrication of tunable two-dimensional nanodevices based on MoS2 and other transition metal dichalcogenides.

Graphical abstract: Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2014
Accepted
13 Jun 2014
First published
17 Jun 2014

Nanoscale, 2014,6, 10033-10039

Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma

M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger and S. I. Khondaker, Nanoscale, 2014, 6, 10033 DOI: 10.1039/C4NR02142H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements