Graphene nanosheets inserted by silver nanoparticles as zero-dimensional nanospacers for dye sensitized solar cells†
Abstract
Three-dimensional Ag nanoparticle/GNs (Ag/GNs) hybrids as highly efficient counter electrode (CE) materials for dye sensitized solar cells (DSSCs) is described, highlighting the Ag nanoparticles as zero-dimensional nanospacers inserting into GNs to lift the interspacing layer between individual GNs. It is demonstrated that, when the hybrids are used as CE materials for DSSCs, compared to their pure GNs, Ag/GNs hybrids without agglomerates have a significant improvement in their electrochemical properties such as high current density, narrow peak-to-peak separation (Epp) and low charge transfer resistance (RCT). The enhancement of electrochemical performance can be attributed to the increased electrode conductivity, an extended interlayer distance and the reduction of the restacking of graphene sheets due to the insertion of metallic Ag nanoparticles into GNs. The DSSC with this hybrid CE exhibited an energy conversion efficiency (η) of 7.72% with an open circuit voltage (VOC), short circuit photocurrent density (JSC), and fill factor (FF) of 732 mV, 14.67 mA cm−2, and 71.8%, respectively.