Jump to main content
Jump to site search

Issue 3, 2015
Previous Article Next Article

Polymerization-based signal amplification for paper-based immunoassays

Author affiliations

Abstract

Diagnostic tests in resource-limited settings require technologies that are affordable and easy to use with minimal infrastructure. Colorimetric detection methods that produce results that are readable by eye, without reliance on specialized and expensive equipment, have great utility in these settings. We report a colorimetric method that integrates a paper-based immunoassay with a rapid, visible-light-induced polymerization to provide high visual contrast between a positive and a negative result. Using Plasmodium falciparum histidine-rich protein 2 as an example, we demonstrate that this method allows visual detection of proteins in complex matrices such as human serum and provides quantitative information regarding analyte levels when combined with cellphone-based imaging. It also allows the user to decouple the capture of analyte from signal amplification and visualization steps.

Graphical abstract: Polymerization-based signal amplification for paper-based immunoassays

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Oct 2014, accepted on 18 Nov 2014 and first published on 18 Nov 2014


Article type: Technical Innovation
DOI: 10.1039/C4LC01239A
Citation: Lab Chip, 2015,15, 655-659
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Polymerization-based signal amplification for paper-based immunoassays

    A. K. Badu-Tawiah, S. Lathwal, K. Kaastrup, M. Al-Sayah, D. C. Christodouleas, B. S. Smith, G. M. Whitesides and H. D. Sikes, Lab Chip, 2015, 15, 655
    DOI: 10.1039/C4LC01239A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements