Issue 11, 2014

Microfluidic generation of chitosan/CpG oligodeoxynucleotide nanoparticles with enhanced cellular uptake and immunostimulatory properties

Abstract

Chitosan/cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN) nanoparticles as potential immunostimulatory adjuvants were synthesized by the conventional bulk mixing (BM) method and a novel microfluidic (MF) method. Their size and size distribution, CpG ODN loading efficiency, surface charge, biocompatibility, cellular uptake, and immunostimulatory response were investigated. In the BM method, nanoparticles were synthesized by vortexing a mixture of chitosan solution and CpG ODN2006x3-PD solution. In the MF method, the nanoparticles were synthesized by rapidly mixing a chitosan solution and CpG ODN solution in a poly(dimethylsiloxane) microfluidic device. Our results indicated that particle size and size distribution, CpG ODN loading efficiency, and surface charge could be easily adjusted by using the tuning preparation method and controlling the flow ratio of fluid rates in the different microfluidic channels. Compared with the BM method, the MF method yielded a decrease in particle size and size range, an increase in CpG ODN loading efficiency, and a decrease in surface charge. After the particles were exposed to 293XL-hTLR9 cells, a water-soluble tetrazolium salt assay indicated that the BM and MF-processed nanoparticles had no significant toxicity and were biocompatible. An immunochemical assay indicated that both types of nanoparticles entered 293XL-hTLR9 cells and were located in the endolysosomes. The MF-processed nanoparticles showed much higher cellular uptake efficiency. After the particles were exposed to peripheral blood mononuclear cells, an enzyme-linked immunosorbent assay quantitatively indicated that both types of nanoparticles stimulated the production of interleukin-6 and the MF-processed nanoparticles showed a much stronger immunostimulatory response. These results indicate that the MF method can be used to synthesize nanoparticles with a controllable size and size range for enhancing the biological activity of DNA and other biomolecules.

Graphical abstract: Microfluidic generation of chitosan/CpG oligodeoxynucleotide nanoparticles with enhanced cellular uptake and immunostimulatory properties

Article information

Article type
Paper
Submitted
06 Jan 2014
Accepted
07 Mar 2014
First published
10 Mar 2014

Lab Chip, 2014,14, 1842-1849

Microfluidic generation of chitosan/CpG oligodeoxynucleotide nanoparticles with enhanced cellular uptake and immunostimulatory properties

S. Chen, H. Zhang, X. Shi, H. Wu and N. Hanagata, Lab Chip, 2014, 14, 1842 DOI: 10.1039/C4LC00015C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements