Jump to main content
Jump to site search

Issue 2, 2014
Previous Article Next Article

Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential

Author affiliations

Abstract

Zinc oxide (ZnO) nanoparticles absorb UV light efficiently while remaining transparent in the visible light spectrum rendering them attractive in cosmetics and polymer films. Their broad use, however, raises concerns regarding potential environmental health risks and it has been shown that ZnO nanoparticles can induce significant DNA damage and cytotoxicity. Even though research on ZnO nanoparticle synthesis has made great progress, efforts on developing safer ZnO nanoparticles that can maintain their inherent optoelectronic properties while exhibiting minimal toxicity are limited. Here, a safer-by-design concept was pursued by hermetically encapsulating ZnO nanorods in a biologically inert, nanothin amorphous SiO2 coating during their gas-phase synthesis. It is demonstrated that the SiO2 nanothin layer hermetically encapsulates the core ZnO nanorods without altering their optoelectronic properties. Furthermore, the effect of SiO2 on the toxicological profile of the core ZnO nanorods was assessed using the Nano-Cometchip assay by monitoring DNA damage at a cellular level using human lymphoblastoid cells (TK6). Results indicate significantly lower DNA damage (>3 times) for the SiO2-coated ZnO nanorods compared to uncoated ones. Such an industry-relevant, scalable, safer-by-design formulation of nanostructured materials can liberate their employment in nano-enabled products and minimize risks to the environment and human health.

Graphical abstract: Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 24 Oct 2013, accepted on 02 Feb 2014 and first published on 03 Feb 2014


Article type: Paper
DOI: 10.1039/C3EN00062A
Citation: Environ. Sci.: Nano, 2014,1, 144-153
  •   Request permissions

    Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential

    G. A. Sotiriou, C. Watson, K. M. Murdaugh, T. H. Darrah, G. Pyrgiotakis, A. Elder, J. D. Brain and P. Demokritou, Environ. Sci.: Nano, 2014, 1, 144
    DOI: 10.1039/C3EN00062A

Search articles by author