Jump to main content
Jump to site search

Issue 9, 2014
Previous Article Next Article

3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture

Author affiliations

Abstract

The electrolysis of water is considered a promising route to the production of hydrogen from renewable energy sources. Electrolysers based on proton exchange membranes (PEMs) have a number of advantages including high current density, high product gas purity and the ability to operate at high pressure. Despite these advantages the high cost of such devices is an impediment to their widespread deployment. A principal factor in this cost are the materials and machining of flow plates for distribution of the liquid reagents and gaseous products in the electrochemical cell. We demonstrate the production and operation of a PEM electrolyser constructed from silver coated 3D printed components fabricated from polypropylene. This approach allows construction of light weight, low cost electrolysers and the rapid prototyping of flow field design. Furthermore we provide data on the operation of this electrolyser wherein we show that performance is excellent for a first generation device in terms of overall efficiency, internal resistances and current–voltage response. This development opens the door to the fabrication of light weight and cheap electrolysers as well as related electrochemical devices such as flow batteries and fuel cells.

Graphical abstract: 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture

Back to tab navigation

Publication details

The article was received on 08 May 2014, accepted on 24 Jun 2014 and first published on 24 Jun 2014


Article type: Paper
DOI: 10.1039/C4EE01426J
Citation: Energy Environ. Sci., 2014,7, 3026-3032
  • Open access: Creative Commons BY license
  •   Request permissions

    3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture

    G. Chisholm, P. J. Kitson, N. D. Kirkaldy, L. G. Bloor and L. Cronin, Energy Environ. Sci., 2014, 7, 3026
    DOI: 10.1039/C4EE01426J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements