Issue 20, 2014

A reduced graphene oxide supported Cu3SnS4 composite as an efficient visible-light photocatalyst

Abstract

In this study, a visible light responsive Cu3SnS4/reduced graphene oxide (RGO) photocatalyst has been synthesized by a facile one-step solvothermal method. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, N2 adsorption–desorption, UV–vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. The photocatalytic activity of the Cu3SnS4/RGO composite under visible-light irradiation (λ > 420 nm) was evaluated by measuring the degradation of rhodamine B (RhB) and phenol. The results revealed that the Cu3SnS4 nanoplates dispersed uniformly on the RGO surface. The Cu3SnS4/RGO composite exhibited much higher photocatalytic activity than pure Cu3SnS4. The enhancement in photocatalytic activity is likely to be due to the synergistic effect of an improved adsorptivity of pollutants, an enhanced visible light absorption and an effective charge separation. In addition, the Cu3SnS4/RGO photocatalyst was stable during the reaction and could be used repeatedly.

Graphical abstract: A reduced graphene oxide supported Cu3SnS4 composite as an efficient visible-light photocatalyst

Article information

Article type
Paper
Submitted
08 Jan 2014
Accepted
19 Mar 2014
First published
20 Mar 2014

Dalton Trans., 2014,43, 7491-7498

A reduced graphene oxide supported Cu3SnS4 composite as an efficient visible-light photocatalyst

H. Liu, Z. Chen, Z. Jin, Y. Su and Y. Wang, Dalton Trans., 2014, 43, 7491 DOI: 10.1039/C4DT00070F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements