Issue 48, 2014

Achieving balanced intermixed and pure crystalline phases in PDI-based non-fullerene organic solar cells via selective solvent additives

Abstract

Herein, balanced intermixed and pure crystalline phases in N,N′-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI)-based non-fullerene organic solar cells (OSCs) were achieved via selective solvent additives (SAs). Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and 7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole) (F-DTS) possessing different compatibilities with EP-PDI were selected as model systems to investigate the guideline of SAs selection for different non-fullerene-based systems. According to the solubility parameter difference (Δδ) between EP-PDI and SAs, five different SAs were divided into two types: (I) strong intermolecular interactions with EP-PDI molecules (with Δδ values less than 5 MPa1/2), (II) weak intermolecular interactions with EP-PDI molecules (with large Δδ values). For PTB7:EP-PDI system with large and obvious phase separation, the introduction of type (II) SAs provided extra interactions with EP-PDI molecules, thus effectively reducing EP-PDI aggregate domains and increasing intermixed fractions. The incorporation of type (II) SAs resulted in a greater yield of dissociated polarons, and the final device efficiency increased from 0.02% to 1.65%. On the contrary, for finely mixed F-DTS:EP-PDI systems, type (I) SAs were considerably more effective because of the fact that the required pure crystalline phases were readily induced by the unfavorable interactions. The charge transport pathways optimized by type (I) SAs improved device efficiency from 0.18% to 2.82%. Hence, by processing selective SAs, the fraction of intermixed and pure crystalline phases for PDI-based non-fullerene OSCs can be well regulated; therefore, the final performance for both systems can be significantly improved.

Graphical abstract: Achieving balanced intermixed and pure crystalline phases in PDI-based non-fullerene organic solar cells via selective solvent additives

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2014
Accepted
23 Oct 2014
First published
24 Oct 2014

Phys. Chem. Chem. Phys., 2014,16, 26917-26928

Achieving balanced intermixed and pure crystalline phases in PDI-based non-fullerene organic solar cells via selective solvent additives

M. Li, J. Liu, X. Cao, K. Zhou, Q. Zhao, X. Yu, R. Xing and Y. Han, Phys. Chem. Chem. Phys., 2014, 16, 26917 DOI: 10.1039/C4CP04161E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements