Jump to main content
Jump to site search

Issue 45, 2014
Previous Article Next Article

Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface

Author affiliations

Abstract

A six-dimensional potential energy surface (PES) for H2 dissociation on rigid Ag(111) is developed by fitting ∼4000 plane-wave density functional theory points using the recently proposed permutation invariant polynomial-neural network (PIP-NN) method, which enforces both the surface periodicity and molecular permutation symmetry. Quantum reactive scattering calculations on the PIP-NN PES yielded dissociative sticking probabilities for both H2 and D2. Good agreement with experiment was achieved at high collision energies, but the agreement is less satisfactory at low collision energies, due apparently to the neglect of surface temperature in our model. The dissociation is activated by both vibrational and translational excitations, with roughly equal efficacies. Rotational and alignment effects were examined and found to be quite similar to hydrogen dissociation on Ag(100) and Cu(111).

Graphical abstract: Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface

Back to tab navigation

Publication details

The article was received on 22 Aug 2014, accepted on 09 Oct 2014 and first published on 09 Oct 2014


Article type: Paper
DOI: 10.1039/C4CP03761H
Citation: Phys. Chem. Chem. Phys., 2014,16, 24704-24715
  •   Request permissions

    Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface

    B. Jiang and H. Guo, Phys. Chem. Chem. Phys., 2014, 16, 24704
    DOI: 10.1039/C4CP03761H

Search articles by author

Spotlight

Advertisements