Issue 17, 2014

Tuning the thermal conductivity of solar cell polymers through side chain engineering

Abstract

Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

Graphical abstract: Tuning the thermal conductivity of solar cell polymers through side chain engineering

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2014
Accepted
06 Mar 2014
First published
06 Mar 2014

Phys. Chem. Chem. Phys., 2014,16, 7764-7771

Author version available

Tuning the thermal conductivity of solar cell polymers through side chain engineering

Z. Guo, D. Lee, Y. Liu, F. Sun, A. Sliwinski, H. Gao, P. C. Burns, L. Huang and T. Luo, Phys. Chem. Chem. Phys., 2014, 16, 7764 DOI: 10.1039/C4CP00393D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements