Jump to main content
Jump to site search

Issue 30, 2014
Previous Article Next Article

Chirped-pulse millimeter-wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions

Author affiliations

Abstract

A Chirped-Pulse millimeter-Wave (CPmmW) spectrometer is applied to the study of chemical reaction products that result from pyrolysis in a Chen nozzle heated to 1000–1800 K. Millimeter-wave rotational spectroscopy unambiguously determines, for each polar reaction product, the species, the conformers, relative concentrations, conversion percentage from precursor to each product, and, in some cases, vibrational state population distributions. A chirped-pulse spectrometer can, within the frequency range of a single chirp, sample spectral regions of up to ∼10 GHz and simultaneously detect many reaction products. Here we introduce a modification to the CPmmW technique in which multiple chirps of different spectral content are applied to a molecular beam pulse that contains the pyrolysis reaction products. This technique allows for controlled allocation of its sensitivity to specific molecular transitions and effectively doubles the bandwidth of the spectrometer. As an example, the pyrolysis reaction of ethyl nitrite, CH3CH2ONO, is studied, and CH3CHO, H2CO, and HNO products are simultaneously observed and quantified, exploiting the multi-chirp CPmmW technique. Rotational and vibrational temperatures of some product molecules are determined. Subsequent to supersonic expansion from the heated nozzle, acetaldehyde molecules display a rotational temperature of 4 ± 1 K. Vibrational temperatures are found to be controlled by the collisional cooling in the expansion, and to be both species- and vibrational mode-dependent. Rotational transitions of vibrationally excited formaldehyde in levels ν4, 2ν4, 3ν4, ν2, ν3, and ν6 are observed and effective vibrational temperatures for modes 2, 3, 4, and 6 are determined and discussed.

Graphical abstract: Chirped-pulse millimeter-wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions

Back to tab navigation

Publication details

The article was received on 19 Dec 2013, accepted on 31 Mar 2014 and first published on 31 Mar 2014


Article type: Perspective
DOI: 10.1039/C3CP55352C
Author version available: Download Author version (PDF)
Citation: Phys. Chem. Chem. Phys., 2014,16, 15739-15751
  •   Request permissions

    Chirped-pulse millimeter-wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions

    K. Prozument, G. Barratt Park, R. G. Shaver, A. K. Vasiliou, J. M. Oldham, D. E. David, J. S. Muenter, J. F. Stanton, A. G. Suits, G. Barney Ellison and R. W. Field, Phys. Chem. Chem. Phys., 2014, 16, 15739
    DOI: 10.1039/C3CP55352C

Search articles by author

Spotlight

Advertisements