Issue 5, 2014

Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO2 dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination

Abstract

CdS incorporated Si-MCM-48 and Ti-MCM-48 cubic phased mesoporous photocatalysts were prepared by a two-step modification synthetic approach under relatively mild conditions. A highly efficient (24.8%, apparent quantum yield (AQY)) photocatalyst for visible light (λ > 400 nm) enabled solar hydrogen evolution can be realized by assembling CdS with Ti-MCM-48 cubic mesoporous materials in the absence of a noble metal co-catalyst. The photocatalytic mechanism was thoroughly investigated and demonstrated by conducting a wealth of characterization techniques such as powder X-ray diffraction (XRD), nitrogen adsorption isotherm, transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UVPS), atomic absorption spectroscopy (AAS), photoluminescence (PL) spectroscopy, time-resolved fluorescence emission decay, and electron paramagnetic resonance (EPR) spectroscopy studies. This work is the first to unambiguously identify the band positions of both CdS and TiO2 encapsulated in porous materials. The photocatalytic activity of the CdS incorporated Ti-MCM-48 mesoporous photocatalysts was found to be dependent on the content of both CdS and TiO2. A correlation between the electron injection efficiency and the photocatalytic activity was established as well in the CdS incorporated Ti-MCM-48 mesoporous photocatalysts.

Graphical abstract: Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO2 dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2013
Accepted
18 Nov 2013
First published
17 Dec 2013

Phys. Chem. Chem. Phys., 2014,16, 2048-2061

Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO2 dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination

R. Peng, C. Lin, J. Baltrusaitis, C. Wu, N. M. Dimitrijevic, T. Rajh, S. May and R. T. Koodali, Phys. Chem. Chem. Phys., 2014, 16, 2048 DOI: 10.1039/C3CP52801D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements