Issue 36, 2014

2 : 1 5-Fluorocytosine–acesulfame CAB cocrystal and 1 : 1 5-fluorocytosine–acesulfame salt hydrate with enhanced stability against hydration

Abstract

5-Fluorocytosine (FC), a widely used antifungal drug, has poor physical stability under different relative humidity (RH) conditions, which may trigger serious challenges during its drug product development. In this contribution, a conjugate acid–base (CAB) cocrystal and a salt hydrate of FC were obtained with an artificial sweetener, acesulfame (AH), in molar ratios of 2 : 1 (FCAH21) and 1 : 1 (FCAH11), respectively. The resulting products were characterized by a variety of analytical methods, including single-crystal and powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and dynamic vapor sorption (DVS). 13C and 15N solid-state NMR spectra provide solid evidence for the CAB cocrystal/salt formation. At room temperature, moisture sorption data show that the new forms are nonhygroscopic/slightly hygroscopic and resistant to FC hydrate formation under high RH conditions (>80%). FCAH21 has a higher FC content and presents more favorable thermal stability than FCAH11, which make it more attractive for further pharmaceutical application.

Graphical abstract: 2 : 1 5-Fluorocytosine–acesulfame CAB cocrystal and 1 : 1 5-fluorocytosine–acesulfame salt hydrate with enhanced stability against hydration

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2014
Accepted
14 Jul 2014
First published
15 Jul 2014

CrystEngComm, 2014,16, 8537-8545

Author version available

2 : 1 5-Fluorocytosine–acesulfame CAB cocrystal and 1 : 1 5-fluorocytosine–acesulfame salt hydrate with enhanced stability against hydration

L. Wang, X. Wen, P. Li, J. Wang, P. Yang, H. Zhang and Z. Deng, CrystEngComm, 2014, 16, 8537 DOI: 10.1039/C4CE01150C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements